
Algorithms in faif library

Robert M. Nowak

March 2, 2012

Contents
1 DNA 1

1.1 Secondary structures . 1
1.2 The Nussinov algorithm . 2

2 Timeseries 3
2.1 Timeseries representation . 3
2.2 Transformation . 4
2.3 Discretizer . 5
2.4 Prediction . 5
2.5 Time series properties . 7

3 Learning 7
3.1 Naive Bayes Classifier . 7
3.2 Decision Tree Classifier . 8
3.3 K Nearest Neighbours classifier . 9

4 Utils 10
4.1 Random . 10
4.2 Gauss eliminator . 12
4.3 Power . 12

1 DNA

1.1 Secondary structures
The secondary structure is created mainly by hydrogen bonds (Watson-Crick). Nucleic acids sec-
ondary structures are generally divided into helices (contiguous base pairs) called stems, and various
kinds of loops.

Secondary structures (DNA, RNA) of sequence S = x1x2...xn is the set of pair (i, j), where
1≤ i < j ≤ n, and:

• j− i > 3 (the hair-pin loops are longer than 3 nucleotides)

1

• if (i, j) and (i′, j′) are the pairs

– (i,j) is before (i’,j’) i < j < i′ < j′

– or (i’,j’) is before (i,j) i′ < j′ < i < j

– or (i,j) include (i’,j’) i < i′ < j′ < j

– or (i’,j’) include (i,j) i′ < i < j < j′

The structures when (i, j) and (i′, j′) are the pairs, and i< i′< j < j′ are called tertiary structures
(e.g. pseudo-knots)

• pseudo-knots

• kissing hair-pin loops

1.2 The Nussinov algorithm
This algorithm base on minimization the free energy, and it use the equation 1, where the E(S) is the
energy of structure as a sum of the connection energies for pairs, where the example of similarity
matrix is given below.

E(S) = ∑
i, j∈S

e(xi,x j) (1)

e(i,j) A C G U
A 0 0 0 2
C 0 0 3 0
G 0 3 0 1
U 2 0 1 0

The Nussinov algorithm is the dynamic programming approach to find the maximum value of
E(S), and it calculates F(i, j) value as:

F(i, j) = max



0 j− i≤ 3

F(i+1, j−1)+ e(xi,x j) connection

F(i+1, j) xiunpaired
F(i, j−1) x junpaired

maxk:i≤k< j F(i,k)+F(k+1, j) division

Figure 1: example the Nussinov algorithm for sequence CCCAAAAGGG

2 Timeseries

2.1 Timeseries representation
Timeseries is a collection of time-value elements. Time-value is the comprised of time-stamp, value,
and quality.

Real timeseries

Such timeseries, known as real timeseries, are collections in which: the elements are sorted by
timestamps (in ascending order), such that the first element has the oldest timestamp, and the last
element has the newest timestamp.

There are no additional assumptions about timeseries, especially

• equal distance between contiguous timestamps is not required

• timestamp is not unique in a collection

name type description
timestamp boost::posix_time::ptime seconds since midnight January 1, 1970, posix

time, 32 bit unsigned integer value
value double the average value (in the period of an adjacent

timestamps) in units per second
quality double the average (in the period of an adjacent times-

tamps), values from 0.0 to 1.0

Digit timeseries

During calculations timeseries is transformed into (so called) Digit Time Series. Digit timeseries is
a collection of time-values, where

timestamp 32 bit signed integer value Interpretation:
* positive future timestamps
* zero (0) present time
* negative past timestamps

value average value (in the period of adjacent timestams)
quality average value (in the period of adjacent timestams), values from 0.0 to 1.0

Digit timeseries properties

• are sorted by timestamps, the first element being the oldest, the last being the newest

• have every time-value from given range, for example if the first element has a timestamp of
-3 and the last has a timestamp of 3, the collection must have 7 elements { -3, -2, -1, 0, 1, 2,
3 }

• the timestamps are unique

• timeseries must not be empty

2.2 Transformation
Create digit timeseries from real timeseries. Required parameters are:

present time posix time calculation the zero for digit timestamp
delta (resampling rate) number of seconds distance between continuous timestamps

The algorithm use linear approximation of the two closest elements in real time series, as showed
in fig. 2

Figure 2: Transform real time series into digit time series by linear approximation algorithm. The
values in function of time are presented

Example

when the real timeseries is (qualities ignored):

• {(1:00, .3), (1:15, .4), (2:00, .7), (5:00, .4), (6:00, .9)},

and parameters are:

• present: 3:00

• delta 1:00

the digit timeseries is

• {(-2, .3), (-1, .7), (0, .6), (1, .5), (2, .4), (3, .9) }

2.3 Discretizer
The converter from ratio values (eg real numbers) to ordered or interval values (eg integer numbers).
This transformation is used when the algorithms require nominal or ordered values (eg classifier
with only equality tests). The discretizer is a collection of disjoint intervals. Discretizer return the
index of interval containing given value.

The following methods to calculate intervals are available:

• partition of K equal length intervals

• partition of K intervals, based on K-means algorithm

The difference is shown on picture.

2.4 Prediction
The regression-based and memory-based models are provided for prediction calculation. Regression-
based are: auto-regressive (AR), auto-regressive moving average (ARMAX) Memory-based are:
reference day (KNN) and reference days with inputs (KNNX).

Auto-regressive model (AR)

Auto-regressive model AR of order p called AR(p) calculates the prediction based on the history
of the signal. The S is the signal, St the value in time t, α1...αp are parameters of the model.

St =
p

∑
i=1

αiSt−i

Examples:

• AR(2), α1 = 1.0,α2 = 1.0, signal = { 1.0, 1.0 }, predictions = { 2, 3, 5, 8, 13, 21, 34, ... };

• AR(4), α1 = 0.25,α2 = 0.25,α3 = 0.25,α4 = 0.25 for input { 1, 2, 3, 4 } gives predictions {
2.5, 2.875, 3.09375, ... }

Memory-based model (KNN)

The KNN algorithm finds the closest (to the reference) sequence in past and then calculates the
prediction. For example, when reference block (of length 3, timestamps {14,15,16}) is given in the
figure below

the algorithm finds the nearest (most similar) sequence {5,6,7}

then the predictions are the time-values that follow the most similar sequence

Parameters of model:
name description
reference block the least time-values
reference block length the length of reference block
prediction length number of values in prediction
number of neighbours in the given example only one closest block was found. Generally, the

n closest could be considered, and the prediction is the average of pre-
dictions

2.5 Time series properties
Average

Correlation

Correlation, formally cross-correlation, finds repetitions in timeseries patterns, and is a measure of
similarity between two signals. Autocorrelation is cross-correlation of a signal with itself.

Definition:
(f ?g)[n] = ∑

j
f [j]g[n+ j]

Integral

In presented library the integration is calculated for real timeseries using the trapezoid rule for
numerical integration, equation below, where f is the real timeseries, the fi is the i-th element of
timeseries f , fi.v is the value of i-th element, the fi.t is the timestamp of i-th element, the i1 is the
element where fi1.t is near to t1, and the i2 is the element where fi2.t is near to t2.

P =
∫ t2

t1
f dt =

i2

∑
i=i1

fi.v+ fi+1.v
2

(fi+1.t− fi.t)

3 Learning

3.1 Naive Bayes Classifier
Naive Bayes Classifiers calculates probability of the given categories for piece of input data. It uses
the Bayes Rule, presented in equation 2.

P(ci|x1,x2, ...,xn) =
P(x1,x2, ...,xn|ci)P(ci)

∑c∈C P(x1,x2, ...,xn|c)P(c)
, (2)

where the C = {c1,c2, ...,cm} is a set of categories; x1 ∈ X1, x2 ∈ X2, ..., xn ∈ Xn are the known
attribute values. The Naive Bayes Classifiers uses the assumption of attribute independence, there-
fore:

P(ci|x1,x2, ...,xn) =
P(x1|ci)P(x2|ci)...P(xn|ci)P(ci)

∑c∈C P(x1,x2, ...,xn|c)P(c)
.

In most cases the Naive Bayes Classifier is used to find the most probable category:

argmax
c

P(c|x1,x2, ...,xn),

and because the denominator does not change for each c ∈C, it could be omitted:

argmax
c

P(c|x1,x2, ...,xn) = argmax
c

P(x1|c1)P(x2|c1)...P(xn|c1)P(c1).

The example calculation performed to obtain the most probable category, as well as the probability
of all categories are showed below.

Lets say we have data with the information about people education level, age, gender and their
answer for some question (yes/no):

education level age gender answer
primary young female yes
primary young male no
primary middle male no
primary old female no
primary old male no
college young female yes
college young male yes
college middle female no
college middle male no
college old male no
university young male yes
university middle male yes
university old female yes
university old male yes

So here we have 7 yes answers, and 7 no answers, thus P(yes) = 0.5, P(no = 0.5). For all 3
attributes the summaries are created, showing the conditional dependence of the answer given se-
lected attribute:

education
answer = yes answer = no

primary 1/7 4/7
college 2/7 3/7
university 4/7 0/7

Additionally P(primary) = 5/14, P(college) = 5/14, P(university) = 4/14 (this will speed-
up computations). Similar tables are created for age and gender:

age
answer = yes answer = no

young 4/7 1/7
middle 1/7 3/7
old 2/7 3/7
P(young) = 5/14, P(middle) = 4/14, P(old) = 5/14,

gender
answer = yes answer = no

female 2/7 3/7
male 5/7 4/7
P(female) = 5/14, P(male) = 9/14.

The question is: what is the most probable answer for university educated female in middle age?

argmax
c∈{yes,no}

P(university, middle, female | c)⇒max{ 8
686

,
9

686
}⇒ no

3.2 Decision Tree Classifier
Decision Tree Classifier, ID3 - Iterate Dichotomizer inspired algorithm.

Decision tree classifier uses tree structure, depicted in Fig. 3. Each node stores the probability for
each category for objects that lead to it, so the root node describes all objects and is being the least
precise, the leaf node are the most precise and describes very similar objects. In presented approach
internal nodes stores the binary equality test, this gives the value of expression ∃v∈E : v= vt , where
E is set of feature values connected with given object (E is example), vt is a test feature value.

Decision tree structure is travelled from root to leaf using Alg. 1, where next node is choosen
based on test results for given object (i.e. set of feature values connected with object E). Algorithm

assumes false result of test (depicted in alg. 1) for missing attribute value.

Algorithm 1 Decision tree classification
procedure CLASSIFY((D,e)) . decision tree D, example e

v← root(T)
while ¬v.isLeaf() do

if v.test(e) then
v← v.left

else
v← v.right

end if
end while
return v.cat

end procedure

test

test

cat={(c1,P(c1)), ..., (cN,P(cN))}

cat

cat

cat

cat

Figure 3: Decision tree data structure; node consists collection of probabilities for each category
c ∈C (called cat) for objects lead to it, internal nodes have test.

The training of Decision Tree is depicted in alg. 2. It is recurrence procedure building the tree,
where the decision if create a leaf or inner node is taken, based on properties of examples from
training examples set supporting given node: if the number of examples is small or there exist only
few examples with not major category the leaf is created, otherwise the inner node. The inner node
creation involves best test searching, which is the test giving the best entropy gain, as described in
eq. 3, where g is entropy gain for test t and example set E, C is set of categories. The examples are
split using test results and left end right sub-node are created recursively.

g =
en(Ep)+ en(En)− en(E)
|Ep|
|E| log(|Ep|

|E|)+
|En|
|E| log(|En|

|E|)

where
Ep = {e ∈ E : t(e) = true},En = {e ∈ E : t(e) = false}

en(E) = ∑
c∈C

|{e ∈ E : ec = c}|
|E|

log(
|{e ∈ E : ec = c}|

|E|
)

(3)

3.3 K Nearest Neighbours classifier
Memory based classifier, stores training examples.

Algorithm 2 Building decision tree using set of testing examples (training)
procedure BUILDTREE(E) . set of training examples

T ← allTests(E)
root← BuildNode(T , E) return root

end procedure
procedure BUILDNODE(T , E)

ĉ← argmaxc∈C |{e ∈ E : ec = c}|
if |E|< Em∨∀c∈C:c6=ĉ|{e ∈ E : ec = c}|< Em then
return LeafNode(E)

end if
t← bestTest(T ,E)
Ep←{e ∈ E : t(e) = True }
E f ←{e ∈ E : t(e) = False }
v← InternalNode(t,E)
v.left = BuildNode(T \{t}, Ep)
v.right = BuildNode(T \{t}, En)
return v

end procedure

?

test

person car?

test

carperson

Figure 4: Example of decision-tree object

4 Utils

4.1 Random
Library provides a number of random generators. Each random generator uses the singleton with
boost::mt19937 (access to boost random generator is synchronized).

The following generators are available:

name description example

RandomDouble the uniform continuous distribution, parameters:

• µ(mean) = 1
2(xmin + xmax),

• σ (standard deviation) = 1
2
√

3
(xmax− xmin)

min max

RandomNormal the continuous normal distribution, parameters: mean
(mi, µ), and standard deviation (sigma, σ) mi

RandomInt the uniform discrete distribution, in range <min,max>
(parameters: min, max)

min max

RandomCustomDistr this distribution is represented by segments, set of n
disjoint uniform distributions (segments). The proba-
bility density function h(x) is:

h(x) =


p1 for x1

min ≤ x < x1
max

p2 for x2
min ≤ x < x2

max
...
pn for xn

min ≤ x < xn
max

0 for x < x1
min or x≥ xn

max

The pi factors are normalized:∫ +∞

−∞

h(x)dx =
n

∑
i=1

pi(xi
max− xi

min) = 1

Parameters of this distribution:

• µ = 1
2 ∑

n
i=1 pi(xi

min + xi
max)

• σ = 1√
3

√
∑

n
i=1 pi((xi

max−µ)3− (xi
min−µ)3)

The library could be used to Monte Carlo simulations which are parametrized by the accuracy
i.e. number of steps when Monte Carlo is performed. The single step includes the calculation of
value of each random variable (drawing) and the calculation of value of expression. Result of Monte
Carlo could be the RandomCustomDistr, where the length of each segments (ε) is the same, and
approxiated by equation 4.

ε =
σ√

n∗N0,1(3)
(4)

where:
N0,1 is the pdf of normal distribution
n is the number of steps in Monte Carlo
σ is standard deviation of result distribution.

The standard deviation of result distribution for expression v is approximated by (5), given the
approximated parameters (µ and σ) of sub-expression.

σ
2 =

{
σ2

a +σ2
b where v = va + vb

µ2
a ∗σ2

b +µ2
b ∗σ2

a +σa ∗σb where v = va ∗ vb
(5)

The expression to calculate the mean and standard deviation the expressions from Tab. 1 are
useful.

name parameters µ σ

degenerate distribution x0 x0 0
RandomNormal µ , σ µ σ

RandomDouble xmin, xmax
1
2(xmin + xmax)

1
2
√

3
(xmax− xmin)

RandomCustomDistr
p1, p2, ..., pn,

1
2 ∑

n
i=1 pi(xi

min + xi
max)

1√
3

√
∑

n
i=1 pi((xi

max−µ)3− (xi
min−µ)3)x1

minx2
min, ...,x

n
min,

x1
max,x

2
max, ...,x

n
max

Table 1: The mean and standard deviation for random generators

4.2 Gauss eliminator

4.3 Power
The integral power n of real number x could be calculated by expression

xn = x∗ x∗ ...∗ x︸ ︷︷ ︸
n

(6)

If the n is big, the expression 6 is inefficient, and could be modified to use the square function.
If n = 2m i.e n is power of two (2, 4, 8, 16 , ...) the xn could be calculated by expression 7, where
sqr(x) means square of x. For n = 1024 there is 10 multiplications instead of more than thousand
used by expression 6.

xn = (...((x2)2)...)2︸ ︷︷ ︸
m

= sqr ◦ sqr ◦ ...◦ sqr︸ ︷︷ ︸
m

(x), where n = 2m (7)

The xn where n is a unsigned integer is calculated based on property described above. If the
binary of n = bm ∗2m +bm−1 ∗2m−1 + ...+b1 ∗2+b0 = (bmbm−1...b1b0)2, xn is the multiplication
of terms sqr ◦ sqr ◦ ...◦ sqr︸ ︷︷ ︸

m

(x) , e.g. x35 = x32+2+1 = ((((x2)2)2)2)2 ∗ (x2)∗ x.

The faif/utils/Power.hpp include the function templates to calculate the power for integer
n.

