faif
Class Hierarchy

Go to the graphical class hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 1234]
 CAssignable
 Cfaif::ml::Belief< Val >Belief is value id with probability
 Cbinary_function
 Cfaif::search::BooleanGene
 Cfaif::dna::ChainThe DNA strand (single)
 Cfaif::ml::Classifier< Val >Clasiffier interface
 Cfaif::dna::CodonAminoTableCodons for given amino, amino for given codon, singleton
 Cfaif::search::compareWeight< T >Comparizon used by searchUnifiedCost
 Cfaif::search::compareWeightAndHeuristic< T >Comparizon used by AStar
 Cstd::vector< T >::const_iteratorSTL iterator class
 CCopyConstructible
 Cfaif::search::CrossoverCustom< Space >Crossover policy - crossover from Space
 Cfaif::search::CrossoverNone< Space >Crossover policy - no crossover
 Cfaif::ml::DecisionTreeTrainParamsParam for training decision tree
 CDefaultConstructible
 Cfaif::ml::DistanceNominalValue< Val >Distance metrics for Nomianal Values Collection, used in K Nearest Neighbors classifier
 Cfaif::DistrValue
 Cfaif::DomainEnumerate< Val >Forward declaration
 Cfaif::dna::EnergyNucleoMaps between pair of nucleotides and its energy
 CEqualityComparable
 Cfaif::search::EvolutionaryAlgorithm< Space, Mutation, Crossover, Selection, StopCondition >Evolutionary algorithm
 Cfaif::search::EvolutionaryAlgorithmGeneConcept< T >Concept for evolutionary algorithm gene the type gives the generateRandom method and the mutate method
 Cfaif::search::EvolutionaryAlgorithmSpaceConcept< Space >Concept for evolutionary algorithm space
 Cstd::exceptionSTL class
 Cfaif::search::ExpectationCustom< Space >Expectation policy - custiom
 Cfaif::search::ExpectationMaximization< Space, Expectation, Maximization, StopCondition >Expectation-Maximization algorithm
 Cfaif::search::ExpectationNone< Space >Expectation policy (empty)
 Cfaif::FeatureInitDefault< Feature >Feature init policy - use default constructor
 Cfaif::dna::FoldedMatrixStrategy
 Cfaif::ml::FusionInternal< Belief >Typedef's for Dempster-Shafer combination rule (for fusion) and some internal (helping) methods
 Cfaif::search::HillClimbing< Space, NextNodeStrategy >Hill climbing algorithm. Search the neighbour for the better solution
 Cfaif::ml::Classifier< Val >::InitValueId< Feature >Helping inner class to init PointAndFeature structure using getUnknownId method
 Cstd::vector< T >::iteratorSTL iterator class
 Cfaif::dna::lessComplementary
 Cstd::list< T >STL class
 Cfaif::search::MaximizationCustom< Space >Maximization policy - custiom
 Cfaif::search::MaximizationNone< Space >Maximization policy (empty) n
 Cfaif::search::MutationCustom< Space >Mutation policy - mutation from Space
 Cfaif::search::MutationNone< Space >Mutation policy - no mutation
 Cfaif::search::NextNodeCheckAll< Space >Policy class for HillClimbing, check all neighbours
 Cfaif::search::Node< Individual >Struct to create node in search space from individual
 Cfaif::search::Node< T >
 Cfaif::nominal_tagNominal attribute trait (equality comparable), modeled as element in unordered set
 Cnoncopyable
 Cfaif::dna::NucleotideDNA nucleotide
 Cpair
 Cfaif::timeseries::PredictionVisitor
 Cfaif::ml::PrintCountAttrFunctor< Categories >Class to show the classifier state, print the attribs and counters
 Cfaif::ml::PrintCountersFunctor< Categories >Print the cauters for given category
 Cfaif::RandomCustomCreator
 Cfaif::RandomCustomDistrDistribution described by histogram (sum of ranges)
 Cfaif::RandomDoubleUniform distribution for double, in given range, e.g. <0,1), uses RandomSingleton
 Cfaif::ml::RandomForestParamsRandom forest's parameters
 Cfaif::RandomIntUniform distribution for int, in range <min,max>, uses RandomSingleton
 Cfaif::RandomNormalNormal distribution for double, for given mean (mi) and standard deviation (sigma), uses RandomSingleton
 Cfaif::RandomSingletonSingleton, synchronized proxy to boost::Random
 Cfaif::dna::SecStructSecondary structure
 Cfaif::search::SelectionRanking< Space >Succession and selection policy - the n-th best individuals survive
 Cfaif::search::SelectionRoulette< Space >Succession and selection policy - roulette wheel (probability of selection of an idividual is equal to its normalized fitness)
 Cfaif::search::Space< Ind >Typedef-s for space, where the fitness is defined as double
 Cfaif::search::SpaceConcept< Space >Concept for space with fitness
 Cfaif::search::StopAfterNSteps< STEPS_NUM >Stop condition, finish the algorithm after STEPS_NUM iterations
 Cfaif::ml::SvmClassifier< Val, DomainVal >
 Cfaif::ml::TrainExampleCategoryCounters< Val >
 Cfaif::timeseries::TransformationTransformation - class to change timeseries stored in TimeSeriesDigit and/or TimeSeriesReal
 Cfaif::search::TransformationNoneTagTrait tag, no transformation should be executed
 Cfaif::search::TreeNode< T >Template to create the node in tree-based search methods
 Cfaif::search::TreeNodeHeuristicConcept< Node >Concept for heuristic search algorithms, it check the presence of 'getHeuristic' method, used by heuristic search functions e.g. 'searchAStar'
 Cfaif::search::TreeNodeWeightConcept< Node >Concept for informed search algorithms, it check the presence of 'getWeight' method, used by informed search functions e.g. 'searchUniformCost'
 Ctuple
 Cunary_function
 Cfaif::ValueNominal< Val >Nominal attribute template (equality comparable)
 Cstd::vector< T >STL class
 Cfaif::search::VectorIndividual< Gene >Template to generate individual which is the vector of Genes
 Cfaif::search::VoseAlgHelping class implemented the M.D.Vose (1991) algorithm
 CDomain
 CSection< V >
 CValueId