►CAssignable | |
Cfaif::DomainConcept< Dom > | Domain concept |
Cfaif::ml::BeliefConcept< Bel > | Belief concept |
Cfaif::ValueConcept< Val > | Value concept |
Cfaif::ml::Belief< Val > | Belief is value id with probability |
►Cbinary_function | |
Cfaif::ml::NormalizationFunctor< Belief, EvidenceValue > | |
Cfaif::search::BooleanGene | |
Cfaif::dna::Chain | The DNA strand (single) |
►Cfaif::ml::Classifier< Val > | Clasiffier interface |
Cfaif::ml::DecisionTree< Val > | Decision Tree Classifier |
Cfaif::ml::KNearestNeighbor< Val, Distance > | K Nearest Neighbor classifier |
Cfaif::ml::NaiveBayesian< Val > | Naive Bayesian Classifier |
Cfaif::ml::RandomForest< Val > | Random Forest Classifier |
Cfaif::dna::CodonAminoTable | Codons for given amino, amino for given codon, singleton |
Cfaif::search::compareWeight< T > | Comparizon used by searchUnifiedCost |
Cfaif::search::compareWeightAndHeuristic< T > | Comparizon used by AStar |
►Cstd::vector< T >::const_iterator | STL iterator class |
Cfaif::dna::Chain::const_iterator | |
►CCopyConstructible | |
Cfaif::DomainConcept< Dom > | Domain concept |
Cfaif::ml::BeliefConcept< Bel > | Belief concept |
Cfaif::ValueConcept< Val > | Value concept |
Cfaif::search::CrossoverCustom< Space > | Crossover policy - crossover from Space |
Cfaif::search::CrossoverNone< Space > | Crossover policy - no crossover |
Cfaif::ml::DecisionTreeTrainParams | Param for training decision tree |
►CDefaultConstructible | |
Cfaif::DomainConcept< Dom > | Domain concept |
Cfaif::ml::BeliefConcept< Bel > | Belief concept |
Cfaif::ValueConcept< Val > | Value concept |
Cfaif::ml::DistanceNominalValue< Val > | Distance metrics for Nomianal Values Collection, used in K Nearest Neighbors classifier |
Cfaif::DistrValue | |
Cfaif::DomainEnumerate< Val > | Forward declaration |
Cfaif::dna::EnergyNucleo | Maps between pair of nucleotides and its energy |
►CEqualityComparable | |
Cfaif::DomainConcept< Dom > | Domain concept |
Cfaif::search::NodeWithChildrenConcept< Node > | Concept for node with children |
Cfaif::search::NodeWithFinalFlagConcept< Node > | Concept for node with final flag for search in tree-like structures The function 'searchDepthFirst' and 'searchBreadthFirst' require this concept |
Cfaif::ValueConcept< Val > | Value concept |
Cfaif::search::EvolutionaryAlgorithm< Space, Mutation, Crossover, Selection, StopCondition > | Evolutionary algorithm |
Cfaif::search::EvolutionaryAlgorithmGeneConcept< T > | Concept for evolutionary algorithm gene the type gives the generateRandom method and the mutate method |
►Cfaif::search::EvolutionaryAlgorithmSpaceConcept< Space > | Concept for evolutionary algorithm space |
Cfaif::search::EvolutionaryAlgorithmSpaceWithCrossoverConcept< Space > | Concept for evolutionary algorithm space |
Cfaif::search::EvolutionaryAlgorithmSpaceWithMutationConcept< Space > | Concept for evolutionary algorithm space |
►Cstd::exception | STL class |
►Cfaif::FaifException | Base exception class for faif library |
Cfaif::dna::CodonStringTooShortException | Exception when chain representing codon is shorted than 3 nucleotides |
Cfaif::dna::NucleotideBadCharException | Exception thrown when unknown nucleotide (bad letter) occures |
Cfaif::NotFoundException | Exception thrown when the value for given attribute is not found |
Cfaif::timeseries::PredictionRangeException | Bad prediction range exception |
Cfaif::search::ExpectationCustom< Space > | Expectation policy - custiom |
Cfaif::search::ExpectationMaximization< Space, Expectation, Maximization, StopCondition > | Expectation-Maximization algorithm |
Cfaif::search::ExpectationNone< Space > | Expectation policy (empty) |
Cfaif::FeatureInitDefault< Feature > | Feature init policy - use default constructor |
Cfaif::dna::FoldedMatrixStrategy | |
Cfaif::ml::FusionInternal< Belief > | Typedef's for Dempster-Shafer combination rule (for fusion) and some internal (helping) methods |
Cfaif::search::HillClimbing< Space, NextNodeStrategy > | Hill climbing algorithm. Search the neighbour for the better solution |
Cfaif::ml::Classifier< Val >::InitValueId< Feature > | Helping inner class to init PointAndFeature structure using getUnknownId method |
►Cstd::vector< T >::iterator | STL iterator class |
Cfaif::dna::Chain::iterator | |
Cfaif::dna::lessComplementary | |
►Cstd::list< T > | STL class |
Cfaif::Space< Domain > | Space n-dimensional, each domain of the same type |
Cfaif::Space< AttrDomain > | |
Cfaif::search::MaximizationCustom< Space > | Maximization policy - custiom |
Cfaif::search::MaximizationNone< Space > | Maximization policy (empty) n |
Cfaif::search::MutationCustom< Space > | Mutation policy - mutation from Space |
Cfaif::search::MutationNone< Space > | Mutation policy - no mutation |
Cfaif::search::NextNodeCheckAll< Space > | Policy class for HillClimbing, check all neighbours |
Cfaif::search::Node< Individual > | Struct to create node in search space from individual |
Cfaif::search::Node< T > | |
►Cfaif::nominal_tag | Nominal attribute trait (equality comparable), modeled as element in unordered set |
►Cfaif::ordinal_tag | Ordered attribute trait (equality comparable, less than comparable) , modeled as element in ordered set |
►Cfaif::interval_tag | Interval attribute trait (equality comparable, less than comparable, distance), integer numbers |
Cfaif::ratio_tag | Nominal attribute trait (equality comparable, less than comparable, distance, continuous), real numbers |
►Cnoncopyable | |
Cfaif::dna::FoldedChain | DNA strand with secondary structure |
Cfaif::dna::FoldedMatrix | |
Cfaif::dna::FoldedPair | Two DNA chains with secondary structures |
Cfaif::dna::Matrix | Matrix - 2D array with indexing |
Cfaif::dna::SecStructProxy | |
►Cfaif::timeseries::Prediction | |
Cfaif::timeseries::PredictionAR | |
Cfaif::timeseries::PredictionKNN | |
Cfaif::dna::Nucleotide | DNA nucleotide |
►Cpair | |
Cfaif::dna::ConnectPair | The pair of nucleotides which are join by Watson-Crick interaction |
Cfaif::hapl::AlleleImpl | Helping structure, implements the Allele members |
Cfaif::timeseries::Section< V > | |
Cfaif::timeseries::PredictionVisitor | |
Cfaif::ml::PrintCountAttrFunctor< Categories > | Class to show the classifier state, print the attribs and counters |
Cfaif::ml::PrintCountersFunctor< Categories > | Print the cauters for given category |
Cfaif::RandomCustomCreator | |
Cfaif::RandomCustomDistr | Distribution described by histogram (sum of ranges) |
Cfaif::RandomDouble | Uniform distribution for double, in given range, e.g. <0,1), uses RandomSingleton |
Cfaif::ml::RandomForestParams | Random forest's parameters |
Cfaif::RandomInt | Uniform distribution for int, in range <min,max>, uses RandomSingleton |
Cfaif::RandomNormal | Normal distribution for double, for given mean (mi) and standard deviation (sigma), uses RandomSingleton |
Cfaif::RandomSingleton | Singleton, synchronized proxy to boost::Random |
Cfaif::dna::SecStruct | Secondary structure |
Cfaif::search::SelectionRanking< Space > | Succession and selection policy - the n-th best individuals survive |
Cfaif::search::SelectionRoulette< Space > | Succession and selection policy - roulette wheel (probability of selection of an idividual is equal to its normalized fitness) |
►Cfaif::search::Space< Ind > | Typedef-s for space, where the fitness is defined as double |
Cfaif::search::EvolutionaryAlgorithmSpace< Ind > | Typedef-s for space for evolutionary algorithm, where the population is a vector of individuals, and the fitness is the double |
Cfaif::search::SpaceConcept< Space > | Concept for space with fitness |
Cfaif::search::StopAfterNSteps< STEPS_NUM > | Stop condition, finish the algorithm after STEPS_NUM iterations |
Cfaif::ml::SvmClassifier< Val, DomainVal > | |
Cfaif::ml::TrainExampleCategoryCounters< Val > | |
Cfaif::timeseries::Transformation | Transformation - class to change timeseries stored in TimeSeriesDigit and/or TimeSeriesReal |
►Cfaif::search::TransformationNoneTag | Trait tag, no transformation should be executed |
Cfaif::search::TransformationCustomTag | Trait tag, user tranformation should be executed |
Cfaif::search::TreeNode< T > | Template to create the node in tree-based search methods |
Cfaif::search::TreeNodeHeuristicConcept< Node > | Concept for heuristic search algorithms, it check the presence of 'getHeuristic' method, used by heuristic search functions e.g. 'searchAStar' |
Cfaif::search::TreeNodeWeightConcept< Node > | Concept for informed search algorithms, it check the presence of 'getWeight' method, used by informed search functions e.g. 'searchUniformCost' |
►Ctuple | |
Cfaif::dna::Codon | Triplet of nucleotides, codon |
Cfaif::timeseries::KNNDef | KNN parameters, k = num_neighbours, ref_size = size of reference block |
Cfaif::timeseries::TimeValueDigit | |
Cfaif::timeseries::TimeValueReal | Timeseries value, single value in given real time. Plain old data |
►Cunary_function | |
Cfaif::ml::AddEvidenceFunctor< Belief > | |
Cfaif::ValueNominal< Val > | Nominal attribute template (equality comparable) |
►Cstd::vector< T > | STL class |
Cfaif::ml::Classifier< Val >::ExamplesTrain | Inner class - examples train collection |
Cfaif::Point< Val > | Point in n-space, each component of the same type |
Cfaif::timeseries::Discretizer< V > | |
Cfaif::timeseries::TimeSeriesDigit | |
Cfaif::timeseries::TimeSeriesReal | Timeseries - time hold as RealTime |
►Cfaif::Point< Value > | |
Cfaif::PointAndFeature< Value, Feature, FeatureInit > | Point and some feature |
Cfaif::search::VectorIndividual< Gene > | Template to generate individual which is the vector of Genes |
Cfaif::search::VoseAlg | Helping class implemented the M.D.Vose (1991) algorithm |
CDomain | |
CSection< V > | |
CValueId | |